202 research outputs found

    Possible contribution of olefins and heteroatoms to the Unidentified Infrared Bands

    Full text link
    The current assignments of the 11.3 feature are shown to be incompatible with observations. An unbiased survey of correlation charts suggests that the olefinic group R2=CH2 is a good alternative candidate. For the 12.7 feature, the best fits are provided by nitrites, R-O-N=O, and amines, R-N=H2. Sulfones, SO2, exhibit strong features near 7.7 and 8.6 microns, which may contribute to the UIBs. These additional functional groups are likely to be attached to the main hydrocarbon dust skeleton previously hypothesized in the coal/kerogen model. They provide further leeway in modelling the large variety of relative band intensities observed in the sky.Comment: 5 pages, 1 figure, accepted by A and A Letter

    Relaxation paths for single modes of vibrations in isolated molecules

    Full text link
    A numerical simulation of vibrational excitation of molecules was devised, and used to excite computational models of common molecules into a prescribed, pure, normal vibration mode in the ground electronic state, with varying, controlable energy content. The redistribution of this energy (either non-chaotic or irreversible IVR) within the isolated, free molecule is then followed in time with a view to determining the coupling strength between modes. This work was triggered by the need to predict the general characters of the infrared spectra to be expected from molecules in interstellar space, after being excited by photon absorption or reaction with a radical. It is found that IVR from a pure normal mode is very "restricted" indeed at energy contents of one mode quantum or so. However, as this is increased, or when the excitation is localized, our approach allows us to isolate, describe and quantify a number of interesting phenomena, known to chemists and in non-linear mechanics, but difficult to demonstrate experimentally: frequency dragging, mode locking or quenching or, still, instability near a potential surface crossing, the first step to generalized chaos as the energy content per mode is increased.Comment: 25 pages, 15 figures; accepted by J. Atom. Phys.

    On the band-to-continuum intensity ratio in the infrared spectra of interstellar carbonaceous dust

    Full text link
    Published interpretations of the relative intensity variations of the Unidentified Infrared Bands (UIBs) and their underlying continuum are discussed. An alternative model is proposed, in which a single carrier for both emits a) mostly a continuum when it is electronically excited by photons (visible or UV), or b) exclusively the UIBs, when only chemical energy is deposited by H capture on its surface, inducing only nuclear vibrations. The bands will dominate in atomic H regions but will be overcome by thermal continuum radiation when the ambient field is strong but lacks dissociating photons (900-1100 Angstroms). The model applies to PDRs as well as to limbs of molecular clouds in the ISM and agrees quantitatively with recent satellite observations. It gives indications on atomic H density and UIB intensity provided the ambient radiation field is known. It invokes no chemical, electronic, structural or size change in order to interpret the observed intensity variations.Comment: 18 pages, 2 figure

    Candidate carriers and synthetic spectra of the 21- and 30-mu protoplanetary nebular bands

    Full text link
    Computational chemistry is used here to determine the vibrational line spectrum of several candidate molecules. It is shown that the thiourea functional group, associated with various carbonaceous structures (mainly compact and linear aromatic clusters), is able to mimic the 21-Ό\mum band emitted by a number of proto-planetary nebulae. The combination of nitrogen and sulphur in thiourea is the essential source of emission in this model: the band disappears if these species are replaced by carbon. The astronomical 21-Ό\mum feature extends redward to merge with another prominent band peaking between 25 and 30 Ό\mum, also known as the 30-Ό\mum band. It is found that the latter can be modelled by the combined spectra of aliphatic chains, made of CH2_{2} groups, oxygen bridges and OH groups, which provide the 30-Ό\mum emission. The absence of oxygen all but extinguishes the 30-Ό\mum emission. The emission between the 21- and 30-Ό\mum bands is provided mainly by thiourea attached to linear aromatic clusters. The chemical software reveals that the essential role of the heteroatoms N, S and O stems from their large electronic charge. It also allows to determine the type of atomic vibration responsible for the different lines of each structure, which helps selecting the most relevant structures. A total of 22 structures have been selected here, but their list is far from being exhaustive; they are only intended as examples of 3 generic classes. When background dust emission is added, model spectra are obtained, which are able to satisfactorily reproduce recent observations of proto-planetary nebulae. The relative numbers of atomic species used in this model are typically H:C:O:N:S=53:36:8:2:1.Comment: 9 pages, 14 figure

    Anomalous spin density distribution on oxygen and Ru in Ca1.5_{1.5}Sr0.5_{0.5}RuO4_4: A polarised neutron diffraction study

    Full text link
    By means of polarized neutron diffraction in a magnetic field of 7.0 T at 1.6 K an anomalously large magnetization density is observed on the in-plane oxygen in Ca1.5_{1.5}Sr0.5_{0.5}RuO4_4. Field-induced moments of different ions are determined by refinement on the flipping ratios, yielding Ό\muRu_{Ru} = 0.346(11) Ό\muB_B, ΌO1\mu_{O1} = 0.076(6) Ό\muB_B and ΌO2\mu_{O2} = 0.009(6) Ό\muB_B. The moment on the oxygen arises from the strong hybridization between the Ru-4d and O-2p orbitals. %The maximum entropy method is used for the %reconstruction of the magnetization density and reveals a strongly anisotropic The maximum entropy magnetization density reconstruction reveals a strongly anisotropic density at the Ru site, consistent with the distribution of the {\it xy} (t2gt_{2g} band) {\it d}-orbitals.Comment: 4 pages 3 figure

    On Silicon Carbide Grains as the Carrier of the 21 Micron Emission Feature in Post-Asymptotic Giant Branch Stars

    Get PDF
    The mysterious 21mu emission feature seen in 12 proto-planetary nebulae (PPNe) remains unidentified since its first detection in 1989. Over a dozen of candidate materials have been proposed within the past decade, but none of them has received general acceptance. Very recently, silicon carbide (SiC) grains with impurities were suggested to be the carrier of this enigmatic feature, based on recent laboratory data that doped SiC grains exhibit a resonance at \~21mu. This proposal gains strength from the fact that SiC is a common dust species in carbon-rich circumstellar envelopes. However, SiC dust has a strong vibrational band at ~11.3mu. We show in this Letter that in order to be consistent with the observed flux ratios of the 11.3mu feature to the 21mu feature, the band strength of the 21mu resonance has to be very strong, too strong to be consistent with current laboratory measurements. But this does not yet readily rule out the SiC hypothesis since recent experimental results have demonstrated that the 21mu resonance of doped SiC becomes stronger as the C impurity increases. Further laboratory measurements of SiC dust with high fractions of C impurity are urgently needed to test the hypothesis of SiC as the carrier of the 21mu feature.Comment: 14 pages, 3 figures, accepted for publication in ApJ

    Spin density distribution in a partially magnetized organic quantum magnet

    Get PDF
    Polarized neutron diffraction experiments on an organic magnetic material reveal a highly skewed distribution of spin density within the magnetic molecular unit. The very large magnitude of the observed effect is due to quantum spin fluctuations. The data are in quantitative agreement with direct diagonalization results for a model spin Hamiltonian, and provide insight on the actual microscopic origin of the relevant exchange interactions.Comment: 5 pages 4 figure

    Classical, non-linear, internal dynamics of large, isolated, vibrationally excited molecules

    Full text link
    This work reports numerical experiments intended to clarify the internal equilibration process in large molecules, following vibrational excitation. A model of amorphous and oxygenated hydrocarbon macromolecule (about 500 atoms)--simulating interstellar dust-- is built up by means of a chemical simulation code. Its structure is optimized, and its normal modes determined. About 4.5 eV of potential energy is then deposited locally by perturbing one of the C-H peripheral bonds, thus simulating the capture of a free H atom by a dangling C bond. The ensuing relaxation of the system is followed for up to 300 ps, using a molecular mechanics code. When steady state is reached, spectra and time correlation functions of kinetic energy and bond length fluctuations indicate that most normal modes have been activated, but the motion remains quasi-periodic or regular. By contrast, when the molecule is violently excited or embedded in a thermal bath (modelled by Langevin dynamics), the same markers clearly depict chaotic motions. Thus it appears that even such a large system of oscillators is unable to provide the equivalent of a thermal bath to any one of these, unless there are strong resonances between some of them. In general, therefore, an energy of a few eV's deposited in an isolated molecule will not be immediately thermalized. This conclusion is of consequence for the interpretation of astronomical UIB spectra. Key Words:IS dust--UIBs--Excitation, relaxation processes.Comment: 19 pages, 9 figures, J. of Phys. B 2002, vol 35(17

    Spatial Separation of the 3.29 micron Emission Feature and Associated 2 micron Continuum in NGC 7023

    Get PDF
    We present a new 0.9" resolution 3.29 micron narrowband image of the reflection nebula NGC 7023. We find that the 3.29 micron IEF in NGC 7023 is brightest in narrow filaments NW of the illuminating star. These filaments have been seen in images of K', molecular hydrogen emission lines, the 6.2 and 11.3 micron IEFs, and HCO+. We also detect 3.29 micron emission faintly but distinctly between the filaments and the star. The 3.29 micron image is in contrast to narrowband images at 2.09, 2.14, and 2.18 micron, which show an extended emission peak midway between the filaments and the star, and much fainter emission near the filaments. The [2.18]-[3.29] color shows a wide variation, ranging from 3.4-3.6 mag at the 2 micron continuum peak to 5.5 mag in the filaments. We observe [2.18]-[3.29] to increase smoothly with increasing distance from the star, up until the filament, suggesting that the main difference between the spatial distributions of the 2 micron continuum and the the 3.29 micron emission is related to the incident stellar flux. Our result suggests that the 3.29 micron IEF carriers are likely to be distinct from, but related to, the 2 micron continuum emitters. Our finding also imply that, in NGC 7023, the 2 micron continuum emitters are mainly associated with HI, while the 3.29 micron IEF carriers are primarily found in warm molecular hydrogen, but that both can survive in HI or molecular hydrogen. (abridged)Comment: to appear in ApJ, including 1 table and 8 figures, high resolution figures available at http://www.ast.cam.ac.uk/~jin/n7023

    Aspects of Discrete Breathers and New Directions

    Full text link
    We describe results concerning the existence proofs of Discrete Breathers (DBs) in the two classes of dynamical systems with optical linear phonons and with acoustic linear phonons. A standard approach is by continuation of DBs from an anticontinuous limit. A new approach, which is purely variational, is presented. We also review some numerical results on intraband DBs in random nonlinear systems. Some non-conventional physical applications of DBs are suggested. One of them is understanding slow relaxation properties of glassy materials. Another one concerns energy focusing and transport in biomolecules by targeted energy transfer of DBs. A similar theory could be used for describing targeted charge transfer of nonlinear electrons (polarons) and, more generally, for targeted transfer of several excitations (e.g. Davydov soliton).Comment: to appear in the Proceedings of NATO Advanced Research Workshop "Nonlinearity and Disorder: Theory and Applications", Tashkent,Uzbekistan,October 1-6, 200
    • 

    corecore